{{flagHref}}
Produits
  • Produits
  • Catégories
  • Blog
  • Podcast
  • Application
  • Document
|
/ {{languageFlag}}
Sélectionnez la langue
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Sélectionnez la langue
Stanford Advanced Materials {{item.label}}

Le graphène ouvre la voie à une nouvelle vague d'électronique ultrarapide

L'une des utilisations proposées pour le graphène est la construction de transistors ultrarapides. Cela est dû à sa capacité à conduire les électrons à une vitesse proche de celle de la lumière. En outre, le graphène est souple et solide, ce qui le rend idéal pour une variété de processus de fabrication. Le seul obstacle est que le graphène est si efficace sur le plan électronique qu'il est considéré comme n'ayant pas de bande interdite. Une bande interdite est une plage d'énergie dans laquelle aucun état électronique ne peut exister, et donc aucune conductivité.

Le graphène, une feuille d'atomes de carbone d'une seule molécule d'épaisseur aux propriétés étonnantes, a été présenté comme un matériau potentiellement révolutionnaire pour les circuits intégrés, les transistors, les batteries, les cellules solaires et bien d'autres choses encore. Les semi-conducteurs ont des bandes interdites petites mais non nulles qui leur permettent de passer très rapidement d'un état à l'autre. La tentative de créer artificiellement des bandes interdites dans une bicouche de graphène pour moduler le courant s'est avérée inefficace à plus d'un titre. La principale raison est qu'en superposant des feuilles simples de graphène pour créer les bicouches nécessaires à l'électronique, de minuscules désalignements se produisent et entraînent une minuscule torsion dans le produit final, ce qui a d'énormes répercussions sur les propriétés électriques.

Des études spectrographiques montrent que les torsions du graphène génèrent des fermions de Dirac sans masse, c'est-à-dire des électrons qui se comportent comme des photons. Cela signifie qu'ils ne sont pas soumis aux bandes interdites techniques que les chercheurs ont essayé de perfectionner dans un graphène bicouche. En raison de cette absence, il est peu probable que le graphène soit utilisé dans les circuits intégrés à haute performance au cours des prochaines années. Toutefois, de nombreuses autres applications électroniques en graphène, moins contraignantes, sont en cours de développement à l'aide du matériau disponible.

  • Écrans tactiles plus résistants que les matériaux de référence.
  • Papier électronique avec une transmittance élevée du graphène monocouche.
  • OLED pliable (flexible). Le graphène de haute qualité électronique a une capacité de pliage inférieure à 5 mm.
  • Transistor à haute fréquence.
  • Transistor logique piloté par une mobilité élevée.
  • Photodétecteurs.


Les puces informatiques d'aujourd'hui reposent sur une plaquette de silicium, mais l'ordinateur du futur pourrait utiliser une fabrication de nanotubes de graphène à la place. Ces structures étant dotées d'excellentes propriétés, elles sont considérées comme l'avenir de la fabrication des transistors. À l'avenir, les chercheurs en graphène devront améliorer la qualité du graphène synthétique et étudier ses propriétés dans des conditions adaptées à la technologie.

CATÉGORIES
À propos de l'auteur

Chin Trento

Chin Trento est titulaire d'une licence en chimie appliquée de l'université de l'Illinois. Sa formation lui donne une large base à partir de laquelle il peut aborder de nombreux sujets. Il travaille sur l'écriture de matériaux avancés depuis plus de quatre ans à Stanford Advanced Materials (SAM). Son principal objectif en rédigeant ces articles est de fournir aux lecteurs une ressource gratuite mais de qualité. Il est heureux de recevoir des commentaires sur les fautes de frappe, les erreurs ou les divergences d'opinion que les lecteurs rencontrent.
REVUES
{{viewsNumber}} Pensée sur "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués*

Commentaire*
Nom *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

Plus de réponses

LAISSER UNE RÉPONSE

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués*

Commentaire*
Nom *
Email *

Nouvelles et articles connexes

PLUS >>
Applications courantes de l'optique infrarouge

Cet article propose un guide clair et convivial des différentes utilisations de l'optique infrarouge. Il couvre des sujets allant de l'imagerie thermique et des contrôles industriels à l'imagerie médicale et à la sécurité, ainsi que les perspectives d'avenir. Une lecture facile qui explique comment la lumière infrarouge trouve de nombreux rôles utiles dans la science et la vie de tous les jours.

LIRE PLUS >
Revêtements optiques infrarouges : Améliorer la transmission et réduire la réflexion

Cet article propose un guide complet sur les revêtements optiques infrarouges. Il explique leur rôle dans l'amélioration de la transmission de la lumière et la réduction de la réflexion. Découvrez les types, les matériaux et les méthodes utilisés. Le guide aborde les mesures de performance et les exemples courants. Il est rédigé sur un ton amical et expérimenté, dans un langage clair et simple.

LIRE PLUS >
Introduction à l'optique infrarouge : Principes et applications

Cet article fournit des informations claires et complètes sur l'optique infrarouge, en commençant par sa définition, la gamme des longueurs d'onde et les principes de base de la réflexion, de la réfraction et de l'absorption. Les matériaux et composants optiques courants, les détecteurs infrarouges, les technologies de détection, les principales utilisations dans différents secteurs et les nouvelles tendances sont tous passés en revue ici.

LIRE PLUS >
Laisser un message
Laisser un message
* Votre nom:
* Votre Email:
* Nom du produit:
* Votre téléphone:
* Commentaires: