Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
SDS
DEMANDER UN DEVIS
/ {{languageFlag}}
Select Language
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
/ {{languageFlag}}
Select Language
Stanford Advanced Materials {{item.label}}

Application du dioxyde de titane dans les produits de protection solaire

Les rayons ultraviolets sont des ondes lumineuses nocives pour le corps humain. Une exposition excessive aux rayons ultraviolets provoque non seulement des rougeurs, des échauffements, un vieillissement et un relâchement de la peau, mais aussi un risque de cancer de la peau. Ces dernières années, la prise de conscience de la nocivité des rayons ultraviolets et de l'importance de la beauté a entraîné une augmentation de la recherche et de la production de produits cosmétiques de protection solaire, tant au niveau national qu'à l'étranger. Dans cet article, nous allons donc examiner les applications du dioxyde de titane dans les produits de protection solaire.

Titanium Dioxide in Sunscreen Products

Le dioxyde de titane dans les produits de protection solaire

Dans le passé, les écrans solaires étaient principalement constitués de composés organiques tels que les benzophénones, les salicylates, les acides p-aminobenzoïques, les cinnamates, etc. Mais ces composés sont peu instables et présentent une certaine toxicité et une certaine irritation. Si vous en ajoutez trop, il est facile de produire des allergies chimiques et peut même induire un cancer de la peau. Mais le dioxyde de nano-titane est progressivement devenu la crème solaire la plus répandue sur le marché en raison de ses performances supérieures.

Ledioxyde de tit ane est un composant inorganique qui présente une excellente stabilité chimique et thermique, un fort pouvoir de décoloration et de dissimulation, une faible corrosivité, une bonne dispersibilité, et qui est non toxique, inodore et non irritant. Il est sûr à utiliser et a une fonction de stérilisation et de désodorisation.

En fonction des différentes longueurs d'onde, la lumière ultraviolette peut être divisée en ondes courtes, moyennes et longues. Les rayons ultraviolets de la région des ondes courtes ont l'énergie la plus élevée mais ont été bloqués par la couche d'ozone. Par conséquent, les rayons ultraviolets des régions d'ondes moyennes et d'ondes longues sont généralement nocifs pour le corps humain.

En raison de la petite taille de ses particules et de sa grande activité, le nanodioxyde de titane peut non seulement absorber les rayons ultraviolets, mais aussi les émettre et les diffuser, de sorte qu'il est capable de bloquer les rayons ultraviolets dans la région des ondes moyennes et des ondes longues, et l'effet est très bon.

En outre, en raison de la finesse des particules de dioxyde de titane, le produit fini est très transparent. Lorsqu'il est ajouté aux produits cosmétiques de protection solaire, la blancheur de la peau est naturelle et plus proche de la couleur de la peau. Pour cette raison, le dioxyde de titane nano est largement plébiscité par les formulateurs de produits cosmétiques et remplace progressivement certains agents anti-ultraviolets organiques, avec une excellente dynamique de développement et un fort potentiel de marché.

Conclusion

Nous vous remercions d'avoir lu notre article et espérons qu'il vous aidera à mieux comprendre l'application du dioxyde de titane dans les produits de protection solaire. Si vous souhaitez en savoir plus sur le titane et le dioxyde de titane, nous vous conseillons de visiter le site de Stanford Advanced Materials (SAM ) pour plus d'informations.

Stanford Advanced Materials (SAM) est un fournisseur mondial de dioxyde de titane et possède plus de vingt ans d'expérience dans la fabrication et la vente de titane et de dioxyde de titane, fournissant des produits de titane de haute qualité pour répondre aux besoins de nos clients en matière de R&D et de production. C'est pourquoi nous sommes convaincus que SAM sera votre fournisseur de produits en titane et votre partenaire commercial préféré.

CATEGORIES
About the author

Chin Trento

Chin Trento est titulaire d'une licence en chimie appliquée de l'université de l'Illinois. Sa formation lui donne une large base à partir de laquelle il peut aborder de nombreux sujets. Il travaille sur l'écriture de matériaux avancés depuis plus de quatre ans à Stanford Advanced Materials (SAM). Son principal objectif en rédigeant ces articles est de fournir aux lecteurs une ressource gratuite mais de qualité. Il est heureux de recevoir des commentaires sur les fautes de frappe, les erreurs ou les divergences d'opinion que les lecteurs rencontrent.
REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *

Related News & Articles

MORE >>
Guide du nitrure de bore : Propriétés, structure et applications

Découvrez le nitrure de bore (BN) - sa structure, ses propriétés, ses méthodes de production et ses utilisations dans l'électronique, les revêtements, la biomédecine et les matériaux avancés.

READ MORE >
Six informations indispensables sur le DFARS

Le Defense Federal Acquisition Regulation Supplement, connu sous le nom de DFARS, est un cadre fondamental utilisé par le ministère américain de la Défense (DoD) pour régir les contrats de défense. Comprendre le DFARS est essentiel pour toute entité impliquée dans la chaîne d'approvisionnement de la défense américaine. Cet article fournit une vue d'ensemble structurée répondant à six questions clés : Pour plus de matériaux non chinois, nationaux et conformes au DFARS, veuillez consulter Stanford Advanced Materials.

READ MORE >
SAM présente le nitrure de bore hexagonal de haute pureté pour la gestion thermique dans l'électronique de puissance

Stanford Advanced Materials (SAM), un nom de confiance dans le domaine des céramiques avancées et des matériaux d'ingénierie, a le plaisir de souligner le succès croissant de son nitrure de bore hexagonal de haute pureté (h-BN) dans la résolution des problèmes de gestion thermique dans les systèmes électroniques à haute tension. Ce matériau est de plus en plus considéré comme une solution fiable pour les applications exigeantes dans les véhicules électriques, les dispositifs à semi-conducteurs et les modules de puissance.

READ MORE >
Leave A Message
Leave A Message
* Your Name:
* Your Email:
* Product Name:
* Your Phone:
* Comments: